Atomic force microscopy study of immunosensor surface to scale down the size of ELISA-type sensors.
نویسندگان
چکیده
Here we describe the use of atomic force microscopy (AFM) to study the nanoscale mechanics of the molecular layers of a popular immunosensor, ELISA (enzyme-linked immunosorbent assay) type. We characterize the sensor surface in terms of brush length and grafting density of the molecular layers. The obtained data demonstrated that a reliable reading of the immunosignal (a suggested dimensionless combination of brush length and grafting density) can be attained from an area as small as approximately 3 microm(2). This is approximately 4 million times smaller compared to typical ELISA sensors. The immunosensor described is composed of a molecular mix of two different antigens. Intriguingly, we find that AFM can reliably distinguish between having the immunosignal from either antibody and from both antibodies together. This was impossible to get by using standard optical detection methods.
منابع مشابه
بررسی خواص حسگری لایههای اکسید قلع نانوساختار لایهنشانی شده به روشهای تبخیر گرمایی و کَند و پاش نسبت به اتانول
In this paper, manufacturing and evaluation of ethanol gas sensors based on thin films of nanostructure tin oxide have been investigated. SnO2 thin films were prepared by both thermal evaporation (type I) and sputtering (type II) methods and heat treated on silicon wafer substrates. Scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD) and energy dispersive ...
متن کاملNanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography
Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...
متن کاملExploring mechanism of xanthate adsorption on chalcopyrite surface: An atomic force microscopy study
In this work, adsorption of the potassium amyl xanthate collector on the pure chalcopyrite surface was studied by applying atomic force microscopy (AFM). The adsorption experiments were carried out at different concentrations of the collector and at diverse pH values in the presence or absence of exterior ions. The changes occurring in the surface morphology of chalcopyrite due to the collector...
متن کاملEffects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers
Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...
متن کاملMolecular Diagnosis of Plasma Phenylalanine in Neonates with Phenylketonuria Disease Using Biological Sensors Based on Surface-Enhanced Raman Spectroscopy (SERS)
In this study, silver nanoparticles were chemically synthesized and deposited on glass substrates using a reducing agent of sucrose, at 50°C. Different characterizations including atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy were obtained to study silvery substrates. Then, the silvery substrates were used as the SERS substrates to de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 21 14 شماره
صفحات -
تاریخ انتشار 2010